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Abstract

A general non-axisymmetric exact analysis of the statics of a laminated piezoelectric hollow sphere is presented in the
paper by using a state space method. To select a proper set of state variables, three displacement functions and two
stress functions are introduced. It is found that the basic equations of a spherically isotropic piezoelectric medium are
eventually turned to two separated state equations with constant coefficients, the solutions of which are then obtained
by virtue of matrix theory. The continuity conditions at each interface are then used to derive two relationships between
respective boundary variables at the inner and outer spherical surfaces. No matter how many layers the sphere contains,
the orders of the final solving equations remain unaltered. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Non-axisymmetric static behavior; Multi-layered piezoelectric hollow sphere; State space method; Cayley-Hamilton
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1. Introduction

Research on piezoelectric materials has been of great interest because of their wide applications in
various industries. Numerous papers have been published on the statics and dynamics of plates and shells
made of piezoelectric materials, see Dokmeci (1980), Tzou and Zhong (1994), Heyliger (1994, 1997), Chen
et al. (1996), Bisegna and Maceri (1996), Paul and Natarajan (1996), and Ding et al. (1997), to name a few.
In particular, as to spherical shells, Kirichok (1980) studied the radial oscillation of a piezoelectric spherical
shell coupled with fluid media. Shul’ga (1993) investigated the general non-axisymmetric vibration of a
piezoceramic hollow sphere by using a separation technique. Chen and Ding (1998) employed a dis-
placement separation method to exactly analyze a rotating spherically isotropic piezoelectric spherical shell.
Recently, Heyliger and Wu (1999) analyzed layered piezoelectric spheres, where analytical solution for the
purely radial problem could be found.

Analysis based on state space formulations (also known as the method of initial functions) has been
shown very powerful to deal with problems related to multi-layered structures (Lure, 1964; Das and Setlur,
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1970; Kameswara Rao and Das, 1977; Ye and Soldatos, 1994). Sosa (1992) and Sosa and Castro (1993) first
presented the two-dimensional state space formulations for plane problems of piezoelectric layered struc-
tures. Lee and Jiang (1996) and Chen et al. (1997) independently derived the three-dimensional static state
space formula and analyzed the bending of piezoelectric plates. Chen et al. (1998) later published the
dynamic space formula and considered the free vibration of a piezoelectric thick plate. The above men-
tioned state space formulae are all established in Cartesian coordinates. Ding et al. (1999) derived the state
space equation in circular cylindrical coordinates and, in connection with the finite Hankel transform
technique, considered the axisymmetric free vibration of a circular plate. Zhou et al. (1999) recently gen-
eralized the method proposed by Ye and Soldatos (1994) to analyze laminated piezoelectric cylindrical
shells. There is no published works even related to the analysis of multi-layered elastic spherical shells/
hollow spheres that is based on a state space method. Although Shul’ga et al. (1988) ever obtained two
independent state space equations with varying coefficients in spherical coordinates for the vibration of a
non-homogeneous spherically isotropic elastic hollow sphere, they just treated them as the simplified
equations that were finally solved using a numerical procedure.

This paper intends to present an exact analysis of the statics of a multi-layered, spherically isotropic,
piezoelectric hollow sphere by using a state space method. In fact, two independent state equations with
constant coeflicients are constructed after using a series of techniques. In particular, separation formulae
for displacements and shear stresses are employed to simplify the basic equations. Relations between the
state variables at the top and lower surfaces of each layer are established directly from the solutions of the
state equations. Allowing for the continuity conditions between two adjacent layers, one can readily derive
two relationships between the state variables at the inner and outer spherical boundary surfaces. The final
solving equations are presented for a specified boundary value problem. It is shown that no matter how
many layers there are, the orders of the solving equations are always the same. Numerical results are finally
given to show the validity and effectiveness of the present method.

2. Basic equations

The basic equations for linear piezoelasticity for spherical isotropy can be found in Tiersten (1969),
Shul’ga (1993), Chen and Ding (1998) and Chen (1999). For the sake of the followed analysis, these
equations are rewritten in a different way here. In spherical coordinates (7, 0, ¢), assuming the center of the
spherical isotropy coincident with the origin, one can write out the constitutive relations as follows:

2oo = rage = c11Sp0 + C128p¢ + €138, + €31 V2 D,
2oy = 1r0opy = 12809 + 11849 + 135, + €31 V2 D,
2 = r0, = 1380 + 13849 + €338, + €3 V2 D,

2y = 10y = 2cuS,0 + €15 Z_q;’

T0s = rGns = 2ea4Syy - % g—f;, (1)
2oy = 1094 = 266504,

Ay =rDy = 2e158,0 — et 2—(57

Ay =rDy = 2e15S,y — % 2%7

4, =D, = e31800 + 31549 + €335, — £33V D,



W.Q. Chen et al. | International Journal of Solids and Structures 38 (2001) 4921-4936 4923

where V, = r0/0r, o;; are the stress components, ¢ and D; are the electric potential and electric displace-
ment components, respectively, c;; are the elastic stiffness constants (measured in a constant electric field), ¢;
the dielectric constants (measured at constant strain), and e;; the piezoelectric constants. It is noted here
that an additional relationship c¢i; = ¢ + 2¢¢6 holds for the spherical isotropy. Sj; in Eq. (1) are determined
by

Srr =18y = v2ur7

au,; +
60 ur7

1 au(b
Se0 =759 = 0 09

Soo = rsgp =

+ u, + ugcot0,

. 2
2Sr9 = 2rs,9 = % + V2u9 — Uy ( )
1 Ou,
2Sr¢ = 2VS,¢ m 9 % + V2u¢ Up,
1 Oup Ou
2S0¢ = 21’S0¢ sm@ 6(; ¢ — Uy COt@

where s;; are the strain components, u; (i = r,0, ¢) are components of the mechanical displacement. The
equations of equilibrium are also rewritten in the following form:

629(/) 6299

vZZ‘r() + cscl +—+ 2Zr() + (Z()() - Z(/)(ﬁ)COtH = 0)

6<f>
0X 62 )

V2,4 + cscl—— a¢ ¢+ 9(/ +22,4 +22p4cot0 =0, (3)
S az,

V,2,, + csc 6d> 0 + 2, — 2 — Z(f,(/, + 2.gcotd = 0.

In the absence of free charge density, the charge equation of electrostatics is
1 o 1 o4
A+ A, + Apsing) + — ——L = 0. 4
Vade 4, + g ag (Aosind) + 55 55 )

3. The separation technique

To establish the state equation, we should first determine the state variables. An intuitive selection will be
the three components of the mechanical displacement (u,, ug, u,), the three components of the stress tensor
(0., 0,0, 0,4), the electric potential @, and the radial component of the electric displacement D,. However,
such a selection will lead to additional confusion in the solving procedure. We therefore employ three
displacement functions w, G and  to rewrite the mechanical displacements as follows (Chen, 1999):

L% 3G _w_ Lo, (5)
0T T sin0dp 00’ " T30 sinfog’ e
In connection with Eq. (5), we further assume (Shul’ga, 1993)
10X, 02, 0, 1 0%
2= AT T A 2ip = 6
0 sinf 0¢p 00 790 sin0 0¢ (6)

where 2| and X, are two stress functions.
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By employing Eqs. (5) and (6), we can transfer the first two equations in Eq. (3) into the following two
equations:

0 1
@ [V222 + 222 + CIIV%G + 2C(,(,G — (C]l + C]z)W — CI3V2W — 631V2(D] + m @ [V2ZI + 221
+ cos (VY + 21//)] =0, (7)
L—[V 422 4+ enViG + 2¢6G — (c11 + cip)w — c13Vow — €3V, @] —E[V X422
sin0 og L* 22 2 +en Vi 66 1+ cn 13V2 31 V2 ag LV241 1
+ ceo (VY + 21//)] =0, (8)
where
o’ 0 ,, 0
Vi= @—f— cot(?@—f— csc 06752'
From Egs. (7) and (8), one obtains without the loss of generality (Hu, 1954; Chen, 1996)
V22 + 225 +enViG + 2¢66G — (c11 + cio)w — c13Vaw — €3V, @ = 0, 9)
The third equation in Eq. (3) and Eq. (4) become
VZZW + er — V%Zz + (6‘11 + Clz)V%G - 2(011 + C12)W — 26‘13V2W — 2@31V2@ = 07 (11)
Vod, 4+ A, + e1sViw — &, Vid + e;5ViG — 5V, ViG = 0. (12)
From the fourth and fifth equations in Eq. (1), by utilizing Eq. (2), one obtains
0
0 (224 caaw + 15D — cas V2 G + casG) — Sno @(044V2lﬁ —cuy —2,) =0, (13)
! a(2+ +eisP V.G + G)+3( Vo —cagp —21) =0 (14)
sin0 ad’ 2 T CyW T €15 C44V2 Cy4 20 C44V2 Ca4 1) =Y.
From the above two equations, one can obtain similarly
2+ caw +eisP — cyy VoG + cyuG =0, (15)
C44V21p - C44lp — Z] =0. (16)
From the third and ninth equations in Eq. (1), by utilizing Eq. (2), one obtains
Z,r = —CBV%G-Q-2013W+C33V2W+@33V2q§, (17)
Ar = —e31VfG—|—2e31w+e33V2w—833V2(15. (18)

4. Mathematical formulations of the state space method

Obviously, y and X are uncoupled from the other state variables as one can see from Egs. (10) and (16),
which can be combined in the following way:
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21 —2 _066(V%+2):|{21}
v = . 19
{ v } { ! v (19)
From Egs. (9), (11), (12), (15), (17) and (18), we obtain
2 28 —1 \Y% k3 —2k; 2y 0 2,
22 ﬂ -2 kzv% — 2066 —kl b 0 22
G _ 0 1/044 1 1 0 615/044 G
Vo (T e/ 0 BV 2B en/a O w (20)
A,. 0 (615/044)V% 0 0 -1 quf A,.
(0] 633/OC 0 ’))v% 72"/ 76‘33/0( 0 (0]
where

o = C33833 + 853, B = (cizess + eziess) /o, 7y = (ci3e33 — czesn)/a,

ki =2(cisf+eny) — (en +en), k=k/2—cs, ks =en+els/cu.

For a p-ply hollow sphere as shown in Fig. 1, the following variable substitution is taken for the ith
spherical layer:

r=ae’ (i=12,....p; 0<ELE), (21

where & = In(b;/a;), a; and b; are the inner and outer radii of the ith spherical layer, respectively. Making
use of Eq. (21), Egs. (19) and (20) become

0 21} |:2 066(Vf+2)}{21}
_ , 22
o { v o ! v @)
>, 261 V2 ke V2 2k 2y 0 >,
22 ﬁ -2 kzv% - 2C66 —k1 Y 0 22
i G _ 0 1/044 1 1 0 815/6‘44 G (23)
65 w 833/0( 0 ﬁV% —Zﬂ 833/0( 0 w
A,. 0 (615/6‘44)v% 0 0 -1 k3v% Ar
(0] 633/0( 0 ’\/v% —2)/ —033/06 0 d
b

—_—

Fig. 1. The geometry of a p-ply hollow sphere.
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The above two equations still include the partial differential operator V#, which can be eliminated from

Egs. (22) and (23) by assuming

I = aicly ZOZTM( )83 (0, ¢), —aIZOETzn( )80, ¢),
2, = a1044 ZZT3W( ) ";‘l(e’ ¢)7 2= a1044 Zzﬁn(ﬁ)sg’(@’ ¢)a
m=0n= m=0n=0 (24)
G=a E:OZOTSH(@S;”(& ¢)7 w=a ZOZTﬁn( )S;”(Q, d))v
A4, = arel; ZZTn( )Sr(0,¢),  P=ar= 2‘; ZOZTSn( )8 (0, 9),

m=0n=

where S™(0, ¢) = P"(cost)e™? are the spherical harmonic functions and P”(x) are the associated Legendre
polynomials, n and m are integers, cﬂ, sg;) and eg; represent the material constants in the first layer.

Substituting Eq. (24) into Eqgs. (22) and (23) gives
(25)

d
_Tlni:MlniTlni (}1:1,2,3,7 i:1727"’ap)7

d¢
(26)

d

d.,TZm M2niT2ni (}1:0,1,2,...; i:1727"'ﬂp)a
T T T T

where Tlni = [Tln; TZn]i = [Tlm‘v T2ni] 5 T2ni = [T3n7 T4n7 ey TSn],' = [T3ni> T4nia ey TSni] 5 and

M (I=2)ce6
2 CE,L 7
Mlni = (1) y
Caa 1
L caq
_ o _
_ ki 2k 2yey;
-1 =1 R A N
v
_ _ kyl+2cq6 _ k_l Yess
p 2 ED) B0 0 0
n 44 44 44 o
Saa 153
M. — 0 " 1 1 0 cw( &
i 0 0 >
€44 833 0 _'31 —2ﬁ 33633 0
o o
8150(1)1 1 ksl
0 ™ 0 0 - -
€33 C44 €33
1 1
‘3“514 522 0 _ Vg_%)l _ 27"922) _ ‘3‘823) 0
2D 0 0 %
33 33 i

Here, the notation / = n(n + 1) is employed. At this stage, we have established in each layer two inde-

pendent state equations with constant coefficients as shown in Egs. (25) and (26)

5. The solutions
Solutions to Egs. (25) and (26) can be obtained by using the matrix theory (Bellman, 1970) as follows

(n=1,2,3,...; 0<&<E), (27)

Tlm’(é) = &Xp (Mlnié)Tlni(O)
(28)

TZni(i) = eXp (MZnié)TZni(O) (}’l = Oa 17 25 s O g 5 < éi)?
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where the exponential function matrices exp (M;,;¢) and exp (M,,;¢) are known as the transfer matrices. By
virtue of the Cayley—Hamilton theorem (Bellman, 1970), one obtains

exp (Mi:€) = i (E)Laxa + o1, ()M, (29)
5
exp (Ma,i€) = B(Elews + Y _Pul(EMS,, (30)
k=1

where I,,, and I¢,.s are unit matrices of the second-order and sixth-order, respectively, and

{=0)-[ 2] {5} o

-1

Boi($) Uomy onomy mly et

Bui(¢) Ly '7%;' ’7%;‘ '731‘ m; el

Bu(&) | _ |1 ny ’7%;' ’7; ’7432' 3 G (32)
B (|1 my my My Wi M et (7

Bai(€) Uons oy my ng n3 el

Bsi(€) U oneg me me Me M el

here, 4;; and n,; are the eigenvalues of the two matrices M;,; and M,,;, respectively. It is noted here that Eq.
(31) or (32) is valid only when the eigenvalues 4;; or n, are distinct; for equal eigenvalues, one should
employ other forms (Bellman, 1970).

Setting ¢ = &, in Eqgs. (27) and (28), we obtain

Tlm’(éi) = exp(Mlnifi)Tlm'(O) (I’l = 132333"'; = 1a2a"'7p)7 (33)

TZm’(éi) = eXp (M2m’€i)T2ni(0) (}’l = 07 17 27 ceey = 1721 e 7p) (34)

Thus, we have established the relations between the state variables at the outer surface and those at the
inner surface of the ith spherical layer. By utilizing the continuity conditions at each interface, one can
finally get the following equations:

T],,p(ép) = SlnTlnl(O) (I’l = 17 27 3, .. .), (35)

T2np(£p) = SZnTan(O) (n = 07 1, 27 .. .), (36)

where S, = H,Lp exp (My,;¢;) and S,, = H;ZP exp (My,;¢;) are the square matrices of the second-order and
sixth-order, respectively. Through the two matrices, the relations between the boundary state variables at
the outer and inner surfaces of a multi-layered piezoelectric hollow sphere are founded. It is noted here that
for a specified boundary value problem, one does not need to solve a second-order or (and) a sixth-order
linear algebraic equation(s). For example, when the stresses and normal electric displacement are prescribed
at both surfaces, i.e. when 7}, (0) and 7j,,(¢,), (k=1,3,4,7) are known, we can obtain the following
equations from Egs. (35) and (36):

SlanTan(O) = Tlnp(ép) _SlnllTlnl(O) (f’l = 172737' . ‘)7 (37)
Sonz Sowia Sonis T5,1(0) T3y (&) Soat - Stz Sans T3,1(0)
Sz Suns Sane T (0) 2 =4 Tanp(Ep) p — | St Sawzz Suns T4 (0)
Sonss Suss Sanse T3,1(0) Trp(E,) Sonst Sanst Sanss 75,1 (0)

(n=1,2,3,...), (38)
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where S1,;; and S,,; are elements on the ith row and jth column of the matrices Sy, and S,,, respectively. It is
noted that Eq. (38) is not valid for » = 0 since we have S,,53 = Sy,54 = S2,56 = 0 in this case. In fact, one can
readily verify that the matrix S,y has the following form:

0 0

Sy = (39)

X © X X X X
S O O X X
S OO X X O
X © X X X X
X X X X X X
— O O X X

where x represents an arbitrary value. Therefore, when n = 0, from the first, the fourth, the fifth and the
sixth equations in Eq. (36), one obtains

T30, St S14 S5 0| [ T
Toop \ _ | Soosr Sooas So0as 0| ) Toon (40)
Tr0p 0 0 Swss O] T
T3op Sr061 Swes Saes 1 Tgo1

Eq. (40) can also be derived from the fact that 7y = 75, = 0 as one can see from Egs. (5) and (6) that Ty,
and Ts, contribute nothing to the elasto-electric field. From the equilibrium condition concerning the
electric charge, the third equation in Eq. (40) should be automatically satisfied with Syss = a;/b,. It is
obvious that Ty and Ty, can be solved from the first and second equations in Eq. (40):

Toor = (T30p — Sa011 T301 — S2015T701) /S2014, (41)

Tsop = S2041 T301 + S2044To01 + S2045T701- (42)
From the fourth equation in Eq. (40), one can determine the difference of electric potential
Tzop — T01 = S2061 301 + S2064 To01 + S2065 701 - (43)
After the state variables of the inner surface are solved, their values at any interior point can be obtained
by

1
Tlnj(é) = &Xp (Mlnji) H eXp (Mlm‘éi)Tlnl (0) (I’l = 17 27 37 cee 0 g é g éj)) (44)

i=j—1

I
Ta() = exp(Ma,€) [ ] exp(Maui€) T2 (0) (2 =0,1,2,...5 0<E<E)). (45)

i=j—1
Three induced variables Xy, 244 and Xy, are determined by
’G oy Y
00— 2gp =2 2—+2 2
00 ob Cos (V G- o + cotHcscE)ad) cscf)aeaq5
2op+ 2y = 2B, + 294, + ky V%G —2kyw, (46)
%y oG ’°G
2oy = — 2 2— -2 2
0p = 066<V v — °F coté)csc@ad)—i- CSC0608¢

To obtain the other two induced variables 4y and 4, in terms of the state variables, we first employ the
following separation formula:
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a1 o

fg=——— ot 22y L 47
! sinf 3¢ 30’ 700 sinO 0¢ (47)

Then, we have
Ay = (ers/cas) 21, Ay = (e15/cas) 2y + k3 . (48)

6. Numerical examples

Three piezoelectric materials, PZT-4, PZT-7A and BaTiOj;, will be considered in the following. The
material constants of these materials can be found in Dunn and Taya (1994) and are given in Table 1 here
for the readers’ convenience. Numerical calculation is first carried out for checking the piezoelectric effect
on the stresses and displacements of a homogeneous hollow sphere under a uniform external pressure ¢.
The inner radius of the sphere, «, is a half of the outer radius b, i.e. a = 0.5b.

Figs. 2 and 3 show the distributions of the non-dimensional normal stresses o, /g and t/q
(t = 099 = 04¢) In a PZT-4 hollow sphere as well as in the corresponding elastic sphere (the piezoelectric
effect in PZT-4 is neglected) which is denoted as PZT-4(E) in both figures. It is noted here that Saint-Venant
has obtained an exact closed-form solution to the problem of a spherically isotropic elastic hollow sphere
subjected to both uniform inner and outer pressures (Love, 1927; Lekhnitskii, 1981). Heyliger and Wu
(1999) also presented an analytic solution to the spherically axisymmetric problem of a piezoelectric sphere.
Our results for the PZT-4(E) sphere and for the PZT-4 piezoelectric sphere are found identical to the Saint-
Venant’s solution and the solution of Heyliger and Wu (1999), respectively. It is seen from Fig. 2 that the
piezoelectric effect lead to a small increase of the normal compression stress (—o,,) in the sphere. Fig. 3
shows that the piezoelectric effect makes the difference between the other two normal stresses at the inner
and outer spherical surfaces of the PZT-4 sphere greater than that of the PZT-4(E) sphere. Calculation has
also been made for the other two piezoelectric materials PZT-7A and BaTiO; with similar observations
obtained. Since the corresponding curves are very close if they are put in figures simultaneously, they are
not presented here. However, for the non-dimensional normal displacement u, = wcﬂ) /(bq), the curves can
be clearly shown in one figure as we can see from Fig. 4. We find that the piezoelectric effect can improve
the anti-deformation ability of the sphere, especially for PZT-4 material.

For the multilayered case, a three-layered hollow sphere with the following geometry was considered,
a =a= OSb, ay; = bl = 0717, ay = bz = 08b, b3 =b.
Three different cases of material combination of the three layers are considered: (A) BaTiO3/BaTiOs/Ba-

TiO;, i.e. the sphere is homogencous; (B) BaTiO3/PZT-4/BaTiO;; (C) BaTiOs/PZT-7A/BaTiOs.

Table 1
Material constants
Materials PZT-4 PZT-7A BaTiO;
Cij (1010 Nm’z) cip = 139, Cip = 778, cip = 148, Cip = 762, ci1 = 150, Cip = 66,
ci3 = 7.43, ¢33 =11.5, ci3 =742, ¢33 =131, c;3 = 6.6, ¢33 = 14.6,
Cy4 = 2.56 Cy4 = 2.54 Cy4 = 4.4
€ij (Cm‘z) e|s = 127, ez = —5.2, e|s = 97, e3 = —2.1, e|s = —0.21, ez = —0.24,

&; (107 Fm1)

e33 = 15.1
&1 = 6464, &33 = 56.22

e33 = 9.5
& = 4073, &33 = 20.81

e33 = 0.44
& = 9872, €33 = 111.56
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Fig. 2. Piezoelectric effect on 4,,/¢q in a homogeneous hollow sphere under uniform external pressure.
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Fig. 3. Piezoelectric effect on /g in a homogeneous hollow sphere under uniform external pressure.

It is assumed that the sphere is subjected to a distributed uniform pressure g over the ranges 0 <0< 6,
and ©— 0y <O0<m at the outer surface »r =5 (Fig. 5). From Fig. 5, one has a =a;, b = b3, and
h="b/k = (1 — cosfy)b. Obviously when k = 1, the whole outer surface will undergo a uniform pressure,
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-0.1
T e
-0.14
| — o PZT-4(E)
016 —a—PZT.7A
' —a— PZT-7TA(E)
< —¥— BaTiO3
=1 018 —<— BaTiO3(E)

026 L b b b b
05 055 06 065 07 075 08 08 09 095 1

r/b

Fig. 4. Piezoelectric effect on i, in a homogeneous hollow sphere under uniform external pressure.

Fig. 5. A three-layered hollow sphere under distributed pressure.

while for £ — oo, the sphere will be subjected to a couple of concentrated forces applied at the two poles. In
the following, we will take the value £ = 4. Because the problem considered is axisymmetric for which one
has m =0 in Eq. (24), the distributed pressure can be expanded in terms of Legendre polynomials as
> o enPy(cos0), where the coefficients o, are given by
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q/k, n=0
e { (1= P (52 = P (B59)]4, n>0 (49)

Figs. 6-8 give the distribution curves of the non-dimensional stresses o,./q, dgs/q and 6,4/q, respectively,
along the radial direction when 0 = /6. Figs. 7 and 8 show that both ¢y and ¢4, have a sudden jump
across the material interface for Cases B and C. Though for all three cases, the distributions of stresses

Case:

o 19

-1 HH\HH\HH\HHIHHM\H\HH\HH\HH\H
0.5 055 0.6 065 07 075 08 08 09 095 1

r/b

Fig. 6. Distribution of ¢,,/q in the radial direction (k =4, 0 = 1/6).

(&}
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Fig. 7. Distribution of ¢y/g in the radial direction (k =4, 6 = n/6).
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Fig. 9. Distribution of D, in the radial direction (k =4, 0 = /6).

differ from each other slightly, the material combination does have a significant effect on the distributions of
the mechanical displacement and the electric displacement. Figs. 9 and 10 show the distribution curves of
the non-dimensional electric displacement D, :D,.cf‘z) / [qegg)] and the non-dimensional mechanical dis-
placement @, = wci?/(bq), respectively, along the radial direction when 6 = /6. The differences between
the three cases are clearly shown in both figures. The circumferential distributions of ¢,./¢ and
D, =D,/ [qe(;})] at the interface » = 0.7b are shown in Figs. 11 and 12, respectively. The difference of the
circumferential distribution of D, between the three cases is also much obvious than that of a,./q.
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Fig. 11. Distribution of ¢,,/q in the circumferential direction (k =4, r =0.7b).

7. Conclusion

This paper develops a state space method to exactly analyze the statics of multi-layered piezoelectric
hollow spheres. It is shown that two separated state equations with constant variables can be derived using
a series of techniques. Relations between the state variables at the inner and outer spherical boundary
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Fig. 12. Distribution of D, in the circumferential direction (k = 4, r = 0.7b).

surfaces are established in the paper, from which any boundary value problem of a multi-layered hollow
sphere can be readily dealt with. Numerical examples are given in the paper to show the effectiveness of the
method. In particular, comparisons with those of the Saint-Venant’s solution for an elastic sphere and with
those of the exact solution obtained in Heyliger and Wu (1999) for a piezoelectric sphere are made and
excellent agreement is obtained.

Since the present method is completely based on the three-dimensional exact equations for linear pi-
ezoelasticity, it can be a benchmark for assessing any two-dimensional approximate shell theory or nu-
merical method.
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